Reasoning Abstractly about Resources

Bradley Clement and Anthony Barrett
Jet Propulsion Laboratory
California Institute of Technology 4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109-8099
{bclement, barrett | @aig.jpl.nasa.gov

Abstract

This paper describes a way to schedule high
level activities before distributing them across
multiple rovers in order to coordinate the resul-
tant use of shared resources regardless of how
each rover decides how to perform its activi-
ties. We present an algorithm for summariz-
ing the metric resource requirements of an ab-
stract activity based on the resource usages of
its potential refinements. We apply these tech-
niques within the ASPEN planner/scheduler to
a domain where a team of rovers must coor-
dinate their schedules to avoid conflicts over
shared resources. We find that an iterative
repair planner can experience an exponential
speedup when reasoning with summary infor-
mation about resource usages and state con-
straints, but there are some cases where the
extra overhead involved can degrade perfor-
mance.

1 Introduction

The trends toward multiple-spacecraft missions and to-
ward ever tighter operations budgets drives a need for
autonomous teams of spacecraft that coordinate their ac-
tivities when sharing limited resources. In order to plan
for coordinated execution, the spacecraft need to reason
about each other’s concurrent execution to detect and re-
solve conflicts between the individual spacecrafts’ plans.
While coordinating the primitive actions is possible, the
sheer number of actions involved can make the problem
intractable. One way to reduce this problem is to com-
bine actions into abstract tasks and coordinate a few ab-
stract tasks instead of many primitive actions. Having a
set of coordinated abstract tasks even alleviates the need
to recoordinate when the way to perform an abstract task
changes, but the abstract task’s timing does not.

Reasoning about abstract actions is the defining char-
acteristic of Hierarchical Task Network (HTN) planners

This work was performed at the Jet Propulsion Labora-
tory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.

vy

[4]. These planners represent abstract actions that decom-
pose into choices of action sequences that may also be
abstract, and HTN planning problems are requests to per-
form a set of abstract actions given an initial state and a
set of abstract task definitions. The planner subsequently
refines the abstract tasks into less abstract subtasks to ulti-
mately generate a schedule of primitive actions that is ex-
ecutable from the initial state. This differs from STRIPS
planning where a planner can find any sequence of ac-
tions whose execution can achieve a set of goals. HTN
planners only find sequences that perform abstract tasks
and a domain expert can intuitively define hierarchies of
abstract activities to make the planner rapidly generate all
sequences of interest.

Previous research [10; 13; 9] has shown that, under cer-
tain restrictions, hierarchical refinement search reduces
the search space by an exponential factor. Subsequent re-
search has shown that these restrictions can be dropped
by reasoning during refinement about the conditions em-
bodied by abstract actions [2; 3]. These summarized con-
ditions represent the internal and external requirements
and effects of an abstract action and those of any possi-
ble primitive actions that it can decompose into. Using
this information, a planner can detect and resolve con-
flicts between abstract actions and sometimes can find
abstract solutions or determine that particular decompo-
sition choices are inconsistent. In this paper, we apply
these abstract reasoning techniques to activities that use
metric resources. We present an algorithm that processes
an activity hierarchy description offline to summarize ab-
stract plan operators’ metric resource requirements.

While planning efficiency is a major focus of our re-
search, another is the support of flexible plan execution
systems such as PRS [6], UMPRS [11], RAPS [5], JAM
[7),etc., that exploit hierarchical plan spaces while inter-
leaving activity decomposition with execution. By post-
poning activity decomposition, such systems gain flex-
ibility to choose decompositions that best match current
circumstances. However, this means that refinement deci-
sions are made and acted upon before all abstract actions
are decomposed to the most detailed level. If such refine-
ments at abstract levels introduce unresolvable conflicts
at more detailed levels, the system will get stuck part way
through executing the activities to perform the requested

abstract tasks. By using summary information, a system
that interleaves planning and execution can detect and re-
solve conflicts at abstract levels to avoid getting stuck and
to provide some ability to recover from failure.

In the next section this paper uses a traveling rover ex-
ample to describe how we represent abstract actions and
summary information. Given these representations the
subsequent section presents an algorithm for analyzing
the definitions of abstract activities to summarize an ab-
stract activity’s possible resource usage. Next we show
how summary information can accelerate an iterative re-
pair base planner/scheduler and make some empirical
measurements in a multi-rover planning domain. Finally
we conclude by summarizing our results.

2 Representations

To illustrate our approach to coordinating populations we
will focus on managing a collection of rovers as they ex-
plore the environment around a lander on Mars. This
exploration takes the form of visiting different locations
and making observations. Each traversal between loca-
tions follows established paths to minimize effort and
risk. These paths combine to form a network like the
one mapped out in figure 1, where vertices denote distin-
guished locations and edges denote allowed paths. Each
of these edges is annotated with how easy it is to traverse.
While some paths are over hard ground, others are over
loose sand where traversal is harder since a rover can slip.

Figure 1: Example map of established paths between
points in a rover domain, where thinner edges are harder
to traverse and labeled points have associated observation
goals

2.1 Preconditions & Effects

More formally, we represent each rover’s status in terms
of state variables and resources. The values in state vari-
ables record the status of key rover subsystems. For
instance, a rover’s position state variable can take on
the label of any vertex in the location network. Given
this representation of state information, activities have
preconditions/effects that we represent as equality con-
straints/assignments. In our rover example traveling on
the arc from point A to point B is done with a go(A,B)
activity. This activity has the precondition {position=A4)
and the effect {position=B).

In addition to interacting with state variables, activi-
ties use resources. While some resources are only used
during an activity, using others persist after an activity
finishes. The first type of resource is nondepletable, with
examples like solar power which immediately becomes
available after some activity stops using it. On the other
hand, battery energy is a depletable resource because its
consumption persists until a later activity recharges the
battery. We model an activity’s resource consumption
in terms subtracting an alloted amount when the activ-
ity starts and adding it back upon completion got nonde-
pletable resources. While this approach is simplistic, it
can conservatively approximate any resource consummp-
tion profile by breaking an activity into smaller subactiv-
ities.

Given our primitive activities to affect state variables
and resources, we use AND/OR trees to define abstract
tasks. These trees use AND branches for tasks that con-
tain a number of subtasks and OR branches for tasks with
one of a number of subtasks. Figure 2 gives an example
of such an abstract activity. Imagine a rover that wants
to make an early morning trip from point Al to point B
on our example map. During this trip the sun slowly
rises above the horizon giving the rover the ability to pro-
gressively use soak rays activities to provide more solar
power to motors in the wheels. In addition to collecting
photons, the morning traverse moves the rover, and the
resultant go activities require arc dependent amounts of
power. While a rover traveling from point A to point B
can take any number of paths, the shortest three involve
following one, two, or three arcs. As the take X path
branches suggest, there can be a number of temporal and
other constraints between tasks in a branch.

morning activities

k akl rays (soak rays AB
R [[y o
Z(Imm 20min (20min
takier loy pathl take high path
taldemldd]e path

|:0(A ,B)
uge 4w
S0min
20(A,1) [go(1,2) gOQB) 20(A,3)[80(3,B)
use 3w, |use 3w |use 6w use4w use6wn
[Omin [10min [20min [ISmin |25min

Figure 2: AND/OR tree defining abstract activities and
how they decompose for a morning drive from point A to
point B along one of the three shortest paths in our exam-
ple map, where 1, 2, and 3 denote unlabeled waypoints

2.2 Summary Information

An abstract activity’s state variable summary information
includes elements for pre-, in-, and postconditions. Sum-
mary preconditions are conditions that must be met by the
initial state or previous external activities in order for a
decomposed activity’s successful execution, and its sum-

mary postconditions are those effects of execution that
are not undone internally. We use summary inconditions
for those conditions that required or asserted in the activ-
ity’s decomposition during the interval of the decompo-
sition’s execution. All summary conditions are used to
reason about how state variables are affected while per-
forming an abstract activity, and they have two orthogo-
nal types of modalities:

« masstl or may indicates that a condition holds in all
or some decompositions of the abstract activity re-
spectively and

& finst, last, sometimies, or always indicates when
a condition holds in the activity’s execution interval.

For instance, the miove(A, B) task in our example has
a musl, first(position=A) summary precondition and
a must, last(position=B) summary postcondition be-
cause all decompositions move the rover from A to B.
Since the miwe(A, B) task decompose into using one of
several paths, it has summary inconditions of the form
may, somatimes(position=i), where i is 1, 2 or 3.

Extending summary information to include metric re-
sources involves defining a new representation and algo-
rithm for summarizing metric resource usage. A sum-
marized resource usage consists of ranges of potential
resource usage amounts during and after performing an
abstract activity, and we represent this summary informa-
tion using the structure

{tocal min_rangs, local max_range, persist_range),

where the resource’s local usage occurs within the activ-
ity’s execution, and the persistent usage represents the us-
age that lasts after the the activity terminates.

The usage ranges capture the multiple possible us-
age profiles of an activity with multiple decomposition
choices and timing choices among loosely constrained
subtasks. For example, the take high path task has a
{[4,4],[8. 6], [0, 0]) summary power use over a 40 minute
interval. In this case the ranges are single points due
to no uncertainty — the task simply uses 4 watts for
15 minutes followed by 6 watts for 25 minutes. The
move(A, B) provides a slightly more complex example
due to its decompositional uncertainty. This task has a
{[0, 4], [4, 6], [0, 0]) summary power use over a 50 minute
interval. In both cases the per.sisi_rangais [0, 0] because
power is a nondepletable resource.

While a summary resource usage structure has only
one range for persistent usage of a resource, it has ranges
for both the minimum and maximum local usage because
resources can have minimum as well as maximum usage
limits and we want to detect conflict occur from violating
either of these limits. As an example of reasoning with
resource usage summaries, suppose that only 3 watts of
power were available during a move({A, B) task. Given
the [4, 6] lvoal_maz_rangs, we know that there is an un-
resolvable problem without decomposing further. Rais-
ing the available power to 4 watts makes the task exe-
cutable depending on how it gets decomposed and sched-
uled, and raising to 6 or more watts makes the task exe-
cutable for all possible decompositions.

3 Resource Summarization Algorithm

The state summarization algorithm [2] recursively prop-
agates summary conditions upwards from an AND/OR
tree’s leaves, and the algorithm for resource summariza-
tion takes the same approach. Starting at the leaves we
find primitive tasks that use constant amounts of a re-
source. Computing the resource summary of a task us-
ing « units of a resource results in {[z, 2], [, 2], [0, 0[)
or {[z,z], [=,], [z, 2]} over the task’s range for nonde-
pletable or depletable resources respectively.

Moving up the AND/OR tree we either come to an
AND or an OR branch. For an OR branch the combined
summary usage comes from the OR computation

([mince chitdnen(lb(local min_nange (I('))) >
MO cechildren (Ub(local_min_range(e)))],
[minicechitanen (th(focal maz range(o))),
MaBeechitdren (Ub(lacal -maz_range(c)))],
Imincecnitdren(Ib(persist_range(c))),
ML cachildren (ub(persist range(c)))]),

where range name functions, Ib(), and ul() respectively
extract a range from a subtask’s summary information,
its lower bound, and its upper bound. The children de-
note the branch’s children with their durations extended
to the length of the longest child. This duration exten-
sion alters a child’s resource summary information be-
cause the child’s usage profile has a 0 resource usage
during the extension. For instance, when we determine
the resource usage for move(A, B) we combine two 40
minute tasks with a 50 minute task. The resulting sum-
mary information is for a 50 minute abstract task whose
profile might have a zero watt power usage for 10 min-
utes. This extension is why move(A, B) has a [0, 4] for a
local min_range instead of [3, 4].

Computing an AND branch’s summary information
is a bit more complicated due to timing choices among
loosely constrained subtasks. Our fake x path exam-
ples illustrate the simplest subcase, where subtasks are
tightly constrained to execute serially. Here profiles are
appended together, and the resulting summary usage in-
formation comes form the SERTAL-AND computation

([minaechildﬂenclb(laoal Min-ram.q 600)) H E?é‘ ¢ (G)),
Trm:naEchildnen G"‘b (lm" mz‘m_ramg e (0“ HX ;e (6))] i
[0 ecohitdren (Lb(local_maz _range(c)) + D?ﬁe (0),
mazoeohitaren (Bl(local maz_range(c)) + 3:5(c))],
[Deechitanen(lb(persist_range(c))),
Yocchitdnen (Ub(peﬂsz'!st—"'ang ﬁﬂc)lm ’

where $5¢(e)] and XP7¢(c) are the respective lower
and upper bounds on the cumulative persistent usages
of children that execute before c. These computations
have the same form as the X computations for the final
persist_range.

The case where all subtasks execute in parallel and
have identical durations is slightly simpler. Here the us-
age profiles add together, and the branch’s resultant sum-
mary usage comes from the PARALLEL-AND computa-

tion

Q[Zceahiidr.en (bbﬂﬁm{ﬁmin—rmﬂc (01]) H
Do hitarendub{loval min ranga(e)) + S (),
Iminvcgonitaren (Ib(local.maz_range(c)) + S (e)),
Eaeah;il'dren (‘ubql ocal mazx -”am'gﬁ(c}‘)i)] 1
[Ecech;ildren (lh(ﬂers'i st range (c)) 1 3
3, cahildren Gu'baﬂeﬂs'dﬂ‘f'mngech))]) 3

where 270" (c) and X}}°"(c) are the respective sums of
local _ma=x_range upper bounds and local min_range
lower bounds for all children except c.

To handle AND branches with loose temporal con-
straints, we consider all possible orderings of subtask
endpoints. For example in our rover’s early morning
tasks their are 3 serial solar energy collection tasks run-
ning in parallel with a task to drive to location Bl Figure
3 shows one possible ordering of the subtask endpoints,
which breaks the move(A, B) into three pieces, and two
of the soak rays tasks in half. Given an ordering we
can (1) use the endpoints to determine intervals, (2) com-
pute summary information for each task/interval combi-
nation, (3) combine the parallel interval summaries using
the PARALLEL-AND computation, and then (4) chain
the intervals together using the SERIAL-AND computa-
tion. Finally, the AND branch’s summary is computed by
combining the summaries for all possible orderings using
an OR computation.

\ maove(A,B) |

: makfr,‘wg L OG0 '.
> soak’ mys : :
- AL AALT0.0T N :

o ? {15,515, 5110,01> soakirays

I <L6:61E-6:6L001
L [1 1 H i
| 1 1 - 1 T -

Figure 3: Possible task ordering for a rover’s morning
activities, with resulting intervals.

While our description of taking an ordering and com-
puting a corresponding combined summary resource us-
age appears to have a polynomial complexity, it is ac-
tually exponential in the number of tasks. This expo-
nential comes from there being multiple ways to com-
pute resource usage summaries for a task’s task/interval
combinations. A task with summary resource usage
{[a,b],[c,d], e,) contributes one of two summary re-
source usages to each intersecting interval':

(Ja, 8], [c, d], [0,00), ([a, d], e, d], [0, 0]).

While the first usage has the tighter - [a, 8], [o, d] local
ranges, the second has looser [a,d], e, d] local ranges.
Since the b and ¢ bounds only apply to the intervals con-
taining the task’s minimum and maximum usages, the
tighter ranges apply to one of a task’s intersecting inter-
vals. While the minimum and maximum usages may not

'For symmary resource usages of to the last interval
intersecting the task, we replace [0,0] with [e, f} in the
persist_range.

happen in the same interval, symmetry arguments let us
connect them in our computation. Thus one interval has
tighter local ranges and all other intersecting intervals get
the looser Iocal ranges, and the extra complexity comes
from having to investigate all task/interval assignment
options. For instance, there are five task/subintervals for
maone{A, B) in figure 3, and three possible ways to com-
pute their summary subinterval resource usages depend-
ing on where to put the [0, 4], [4, 6] ranges instead of the
looser [(1, 6], [@, 6] ranges. In general these placement op-
tions result in an n interval task baving » possible ways
compute its summary resource usages for intersecting in-
tervals, and yry such tasks result in "™ possible consistent
task/interval summary resource usage assignments.

Thus propagating summary information through an
AND branch is exponential in the number of subtasks
with multiple internal subintervals, and the propagation
algorithm takes on the form:

« For each consistent ordering of endpoints:

— For each consistent task/subinterval summary
usage assignment:

* Use PARALLEL-AND computations to
combine task/subinterval summary usages
by subinterval.

* Use a SERIAL-AND computation on the
subintervals’ combined summary usages to
get a consistent summary usage.

e Use OR computation to combine all consistent sum-
mary usages to get AND branch’s summary usage.

4 Using Summary Information

In this section, we describe techniques for using sum-
mary information in local search planners to reason at
abstract levels effectively and discuss the complexity ad-
vantages. Reasoning about abstract plan operators using
summary information can result in exponential planning
performance gains for backtracking hierarchical planners
[3]. In iterative repair planning, a technique called aggre-
gation that involves scheduling hierarchies of tasks sirni-
larly outperforms the movement of tasks individually [8].
But, can summary information be used in an iterative re-
pair planner to improve performance when aggregation is
already used? We demonstrate that summarized state and
resource constraints makes exponential improvements by
collapsing constraints at abstract levels. First, we de-
scribe how we use aggregation and summary information
to schedule tasks within an iterative repair planner. Next,
we analyze the complexity of moving abstract and de-
tailed tasks using aggregation and summary information.
Then we describe how a heuristic iterative repair planner
can exploit summary information.

4.1 Aggregation and Summary Information

While HTN planners commonly take a generative least
commitment approach to problem solving, research in
the OR community illustrates that a simple local search
is surprising effective [12]. Planning via heuristic iter-
ative repair involves using a local search to generate a

plan. The search starts with an initial flawed plan and
iteratively chooses a flaw, chooses a repair method, and
changes the plan by applying the method. Unlike gener-
ative planning, the local search never backtracks. The re-
pair methods can add, change, and remove features from
the current plan. Since taking a random walk through
a large space of plans is extremely inefficient, heuristics
guide the choices by determining the probability distri-
butions for each choice. We build on this approach to
planning by using the ASPEN planner [1].

Moving tasks is a central scheduling operation in it-
erative repair planners. A planner can more effectively
schedule tasks by moving related groups of tasks to pre-
serve constraints among them. Hierarchical task rep-
resentations are a common way of representing these
groups and their constraints. Aggregation involves mov-
ing a fully detailed abstract task hierarchy while preserv-
ing the temporal ordering constraints among the subtasks.
Moving individual tasks independent of their siblings and
subtasks is shown to be much less efficient [8]. Valid
placements of the task hierarchy in the schedule are com-
puted from the state and resource usage profile for the
hierarchy. This profile represents one instantiation of
the decomposition and temporal ordering of the abstract
task’s hierarchy.

A summarized state or resource usage represents all
potential profiles of an abstract task before it is decom-
posed. Our approach involves reasoning about summa-
rized constraints in order to schedule abstract tasks be-
fore they are decomposed. Scheduling an abstract task
is computationally cheaper than aggregation when these
the summarized constraints more compactly represent
the constraint profiles of the hierarchy. This improves
the overall planning/scheduling performance when con-
straints are resolved and solutions are found at abstract
levels before fully decomposing tasks. However, because
these summarized constraints abstract away information
about the timing of constraints and choices of decomposi-
tion, solutions may not be found until tasks are refined to
a lower level of abstraction. In this case, aggregation can
be used to move partially elaborated hierarchies based on
their summarized constraints.

4.2 Complexity Analysis

To move a hierarchy of tasks using aggregation, valid in-
tervals must be computed for each resource for which
the hierarchy makes reservations.? These valid intervals
are intersected for the valid placement intervals for the
abstract tasks and its children. The complexity of com-
puting the set of valid intervals for a resource is Q{cCh)
where ¢ is the number of constraints (usages) an abstract
task has with its children for the timeline variable, and C
is the number of reservations made by other tasks in the
schedule on the timeline [8]. If there are n similar task hi-
erarchies in the entire schedule, then C' = {n — 1)a, and
the complexity of computing valid intervals is G(na?®).

2The analysis also applies to state constraints, but we restrict
our discussion to resource usage constraints for simplicity.

But this computation is done for each of u resource vari-
ables (often constant for a domain), so moving an task
will have a complexity of (J{(una?).

The summary information of an abstract task repre-
sents all of the constraints of its children, but if the chil-
dren share constraints over the same resource, this infor-
mation is collapsed into a single summary resource us-
age in the abstract task. Therefore, when moving an ab-
stract task, the number of constraints involved may be far
fewer depending on the domain. If the scheduler is trying
to place a summarized abstract task among other sum-
marized tasks, the computation of valid placement inter-
vals can be greatly reduced because the a in O(umic?) is
smaller. We now consider two extreme cases where con-
straints can be fully collapsed and where they cannot be
collapsed at all.

In the case that all tasks in a hierarchy have constraints
on the same resource, the number of constraints in a hier-
archy is O(b?) for a hierarchy of depth d and branching
factor (number of child tasks per parent) . In aggrega-
tion, where hierarchies are fully detailed first, this means
that the complexity of moving an task is Ol(unb??) be-
cause ¢ = O(b?). Now consider using aggregation for
moving a partially expanded hierarchy where the leaves
are summarized abstract tasks. If all hierarchies in the
schedule are decomposed to level 4, there are Q(b*) tasks
in a hierarchy, each with one summarized constraint rep-
resenting those of all of the yet undetailed subtasks be-
neath it for each constraint variable. So ¢ = Q(b%), and
the complexity of moving the task is Ol(vnb?). Thus,
moving an abstract task using summary information can
be a multiple of OI(42(4—%) times faster than for aggrega-
tion.

The other extreme is when all of the tasks place con-
straints on different variables. In this case, ¢ = 1 be-
cause any hierarchy can only have one constraint per vari-
able. Fully detailed hierarchies contain v = O(b¢) differ-
ent variables for which aggregation computes valid inter-
vals. So, the complexity of moving an task in this case is
O(nb?). If moving a summarized abstract task where all
tasks in the schedule are decomposed to level 4, v is the
same because the abstract task summarizes all constraints
for each subtask in the hierarchy beneath it, and each of
those constraints are on different variables such that no
constraints combine when summarized. Thus, the com-
plexity for moving a partially expanded hierarchy is the
same as for a fully expanded one. Experimental results
in Section 4.4 exhibit great improvement for cases when
tasks have constraints over common resource variables.

Along another dimension, scheduling summarized
tasks is exponentially faster because it reduces the num-
ber of temporal constraints among the tasks. When task
hierarchies are moved using aggregation, all of the local
temporal constraints are preserved. However, there are
not always valid intervals to move the entire hierarchy be-
cause the combined group of constraints can be overcon-
strained. (i.e. The current fixed temporal relationships in
the hierarchy are not feasible.) However, the scheduler
can move less constraining lower level tasks to resolve

the conflict. In this case, temporal constraints may be vi-
olated among the moved task’s parent and siblings. The
scheduler can then move and/or adjust the durations of
the parent and siblings to resolve the conflicts, but these
movements can affect higher level temporal constraints
or even produce other conflicts. At a depth level ¢ in a
hierarchy with decompositions branching with a factor 4,
the task movement can affect b* siblings in the worst case
and produce an exponential number of conflicts. Thus, if
all conflicts can be resolved at an abstract level i, O(5%~*)
scheduling operations can be avoided. In Section 4.4, we
present empirical data showing the exponential growth of
computation with respect to the depth at which ASPEN
finds solutions, and we find many cases where summary
information completed the search almost immediately be-
cause it found solutions at high levels of abstraction.

4.3 Decomposition Heuristics for Iterative
Repair

Despite this optimistic complexity, reasoning about sum-
marized constraints only translates to better performance
if the movement of summarized tasks resolves conflicts
and advances the search toward a solution. There may
be no way to resolve conflicts among abstract tasks with-
out decomposing them into more detailed ones. So when
should summary information be used to reason about ab-
stract tasks, and when and how should they be decom-
posed? Here, we describe techniques for.reasoning about
summary information as abstract tasks are detailed.

We explored two approaches that reason about tasks
from the top-level of abstraction down in the manner de-
scribed in [3]. Initially, the planner only reasons about
the summary information of fully abstracted tasks. As
the planner manipulates the schedule, tasks are gradually
decomposed to open up new opportunities for resolving
conflicts using the more detailed child tasks. One strat-
egy (that we will refer to as level-decomposition) is to
interleave repair with decomposition as separate steps.
Step 1) The planner repairs the current schedule until the
number of conflicts cannot be reduced. Step 2) It decom-
poses all abstract tasks one level down and returns to Step
1. By only spending enough time at a particular level of
expansion that appears effective, the planner attempts to
find the highest decomposition level where solutions exist
without wasting time at any level. ‘

Another approach is to use decomposition as one of
the repair methods that can be applied to a conflict so
that the planner gradually decomposes tasks that are in-
volved in conflicts. This strategy tends to decompose
the tasks involved in greater numbers of conflicts since
tasks involved in conflicts are potentially expanded when
a conflict is repaired. The idea is that the scheduler can
break overconstrained tasks into smaller pieces to offer
more flexibility in rooting out the conflicts. This resem-
bles the EMTF (expand-most-threats-first) [3] heuristic
that expands (decomposes) tasks involved in more con-
flicts before others. (Thus, we will refer to this heuris-
tic as EMTF throughout the rest of this paper.) Tasks
that are not involved in conflicts are rarely expanded be-

cause they are less likely chosen for repair. Experiments
in Section 4.4 suggest that EMTF performs better than
level-decomposition, but only when EMTF uses decom-
position rates suited for the problem domain.

Another heuristic for improving planning performance
prefers decomposition choices that lead to fewer con-
flicts. Using summary information, the planner can test
each child task by decomposing to the child and replac-
ing the parent’s summarized constraints that summarize
the children with the particular child’s summarized con-
straints. For each child, the number of conflicts in the
schedule are counted, and the child creating the fewest
conflicts is chosen.3 This is the fewest-threats-first (FTF)
heuristic that was demonstrated to be very effective in
pruning the search space in a backtracking planner [3].
Likewise, the experiments in Section 4.4 report that using
FTF can find solutions much more quickly when decom-
position choices cause significantly varying numbers of
conflicts.

4.4 Empirical Comparisons

The experiments we describe here show that, for our
chosen domain, summary information improves perfor-
mance significantly when tasks within the same hierar-
chy have constraints over the same resource, and so-
lutions are found at some level of abstraction. At the
same time, we find cases where reasoning at abstract lev-
els incurs significant overhead when solutions are only
found at deeper levels. However, in domains where de-
composition choices are critical, we show that this over-
head is insignificant because the FTF heuristic finds so-
lutions at deeper levels with better performance. These
experiments also show that the EMTF heuristic out-
performs level-decomposition for certain decomposition
rates, raising new research questions. In addition, we
show that the time to find a solution increases dramati-
cally with the depth where solutions are found, support-
ing the notion that more constraints at deeper levels ex-
ponentially complicate the scheduling problem.

The domain for our problems expands the single rover
problem described in earlier sections to a team of rovers
that must resolve conflicts over shared resources. Paths
between waypoints are assigned random capacities such
that either one, two, or three rovers can traverse a path
simultaneously; only one rover can be at any waypoint;
and rovers may not traverse paths in opposite directions.
In addition, rovers must communicate with the lander for
telemetry using a shared channel of fixed bandwidth. De-
pending on the terrain between waypoints, the required
bandwidth varies. 80 problems were generated for two to
five rovers, three to six science locations per rover, and 9
to 105 waypoints. In general problems that contain fewer
waypoints and more science locations are more difficult
because there are more interactions among the rovers.
Schedules ranged in size from 180 to 1300 tasks. Note
that the experiments use a prototype interface in order

30r, in stochastic planners like ASPEN, the children are
chosen with probability decreasing with their respective num-
ber of conflicts.

Summary information + Aggregation CPU Setonde

1000 2000 3000 4000 5000 8000 o 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000
Summsry Information + Aggregation CPU seconds

Summary Information + Aggregation CPU seconds

Figure 4: Plots for the no channel, mixed, and channel only domains

g &

Summery lntormmtion » Aggingation

Average Depth of Hisrarchiea In Solution

Figure 5: CPU time for solutions found at varying depths.

to use summary information, and some of ASPEN’s op-
timized scheduling techniques could not be used. How-
ever, we report relative performance, making the compar-
isons fair.

We compare ASPEN using aggregation with and with-
out summarization for three variations of the triangulated
field domain. The use of summary information includes
the EMTF and FTF heuristics for decomposition. One
domain excludes the communications channel resource
(no channel); one excludes the path capacity restrictions
(channel only); and the other includes all mentioned re-
sources mixed). Since all of the movement tasks reserve
the channel resource, we expect greater improvement in
performance when using summary information accord-
ing to the complexity analyses in the previous section.
Tasks within a rover’s hierarchy rarely place constraints
on other variables more than once, so the no channel do-
main corresponds to the case where summarization col-
lapses no constraints.

Figure 4 (left) exhibits two distributions of problems
for the no channel domain. In most of the cases (points
along the y-axis), ASPEN with summary information
finds a solution quickly at some level of abstraction.
However, in many cases, summary information performs
notably worse (points along the x-axis). We find that
for these problems finding a solution requires the plan-
ner to dig deep into the rovers’ hierarchies, and once it
decomposes the hierarchies to these levels, the differ-
ence in the additional time to find a’solution between
the two approaches is negligible unless the use of sum-
mary information found a solution at a slightly higher
level of abstraction more quickly. Thus, the time spent
reasoning about summary information at higher levels in-
curred unnecessary overhead. Previous work shows that
this overhead is rarely significant in backtracking plan-

ners because summary information can prune inconsis-
tent search spaces at abstract levels [3]. However, in non-
backtracking planners like ASPEN, the only opportunity
we found to prune the search space at abstract levels was
using the FTF heuristic to avoid greater numbers of con-
flicts in particular branches. Later, we will explain why
FTF is not helpful for this domain but very effective in a
modified domain.

Figure 4 (middle) shows significant improvement for
summary information in the mixed domain compared to
the no channel domain. Adding the channel resource
rarely affected the use of summary information because
the collapse in summary constraints incurred insignificant
additional complexity. However, the channel resource
made the scheduling task noticeably more difficult for
ASPEN when not using summary information. In the
channel only domain (Figure 4 right), summary informa-
tion finds solutions at the abstract level almost immedi-
ately, but the problems are still complicated when AS-
PEN does not use summary information. These results
support the complexity analysis in the previous section
that argues that summary information exponentially im-
proves performance when tasks within the same hierar-
chy make constraints over the same resource and solu-
tions are found at some level of abstraction.

Figure 5 shows the CPU time required for ASPEN us-
ing summary information for the mixed domain for the
depths at which the solutions are found. The depths are
average depths of leaf tasks in partially expanded hierar-
chies. The CPU time increases dramatically for solutions
found at greater depths, supporting our claim that finding
a solution at more abstract levels is exponentially easier.

For the described domain, choosing different paths to a
science location usually does not make a significant dif-
ference in the number of conflicts encountered because
if the rovers cross paths, all path choices will still lead
to conflict. We created a new set of problems where ob-
stacles force the rovers to take paths through corridors
that have no connection to others paths. For these prob-
lems, path choices always lead down a different corridor
to get to the target location, so there is usually a path that
avoids a conflict and a path that causes one. The planner
using the FTF heuristic dominates the planner choosing
decompositions randomly for all but two problems (Fig-
ure 6 left).

Figure 6 (right) shows the performance of EMTF
vs. level decomposition for different rates of decompo-

Summary laformation
CPU Sacands
. 888888

[\ 2000 4000 6000
Summary Information + FTF CPU Seconds

——A
—A lavel-decomp
]
— —B level decomp

15 20
EMTF Docomposttion Rate

Figure 6: Performance using FTF and EMTF vs. level-decomposition heuristics.

sition for three problems selected from the set. The plot-
ted points are averages over ten runs for each problem.
Depending on the choice of rate of decomposition (the
probability that an task will decompose when a conflict
is encountered), performance varies significantly. How-
ever, the best decomposition rate can vary from problem
to problem making it potentially difficult for the domain
expert to choose. Our future work will include investi-
gating the relation of decomposition rates to performance
based on problem structure.*

5 Conclusions

Reasoning about abstract resource constraints exponen-
tially accelerates finding schedules when constraints col-
lapse during summarization, and abstract solutions can
be found. Similar speedups occur when decomposition
branches result in varied numbers of conflicts. The offline
algorithm for summarizing metric resource usage makes
these performance gains available for a larger set of ex-
pressive planners and schedulers. We have shown how
these performance advantages can improve ASPEN’s ef-
fectiveness when scheduling the activities of multiple
spacecraft. The use of summary information also enables
a planner to preserve decomposition choices that robust
execution systems can use to handle some degree of un-
certainty and failure. Our future work includes develop-
ing protocols to allow multiple spacecraft planners to co-
ordinate their activities asynchronously during execution.

References

[1] S. Chien, G. Rabideu, R. Knight, R. Sherwood,
B Engelhardt, D. Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Au-
tomating space mission operations.using automated
planning and scheduling. In Proc. SpaceOps, 2000.

[2] B. Clement and E. Durfee. Theory for coordinating
concurrent hierarchical planning agents. In Proc.
AAAI 1999.

[3] B. Clement and E. Durfee. Performance of coordi-
nating concurrent hierarchical planning agents us-
ing summary information. In Proc. ATAL, 2000.

*For other experiments, we used a decomposition rate of
20%.

[4] K. Erol, J. Hendler, and D. Nau. Semantics for hi-
erarchical task-network planning. Technical Report
CS-TR-3239, University of Maryland, 1994.

[5]1 1J. Firby. Adaptive Execution in Complex Dynamic
Domains. PhD thesis, Yale University, 1989.

[6] M. P. Georgeff and A. Lansky. Procedural knowl-
edge. Proc. IEEE, 74(10):1383-1398, October
1986.

[71 M. Huber. Jam: a bdi-theoretic mobile agent ar-
chitecture. In Proc. Intl, Conf. Autonomous Agents,
pages 236-243, 1999.

[8] R. Knight, G. Rabideau, and S. Chien. Comput-
ing valid intervals for collections of activities with
shared states and resources. In Proc. AIPS, pages
600-610, 2000.

[9] C.Knoblock. Search reduction in hierarchical prob-
lem solving. In Proc. AAAI, pages 686-691, 1991.

[10] R. Korf. Planning as search: A quantitative ap-
proach. Artificial Intelligence, 33:65-88, 1987.

[11] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny.
Umprs: An implementation of the procedural rea-
soning system for multirobot applications. In Proc.
AIAA/NASA Conf. on Intelligent Robotics in Field,
Factory, Service, and Space, pages 842849, March
1994,

[12] Papadimitrion and Steiglitz. Combinatorial Opti-
mization - Algorithms and Complexity. Dover Pub-
lications New York, 1998.

[13] Q. Yang. Formalizing planning knowledge for hi-
erarchical planning. Computational Intelligence,
6(1):12-24, February 1990.

